North Padre Island Flow Study Peer Review

Presented by: Aaron Horine, PE Ryan Burke, PE

December 7, 2023

Agenda

- Introduction
- Coastal Engineering Analysis
- Peer Review of LJA's Study
- Anchor QEA Model Setup
- Anchor QEA Model Calibration and Validation
- Anchor QEA Modeling
- Recommendations

Introduction

- Project Manager/Principal Engineer
 - Aaron Horine, PE (Corpus Christi)
- Senior Project Engineer/Technical Lead
 - Ryan Burke, PE (Austin)
- Study Purpose
 - Review LJA's circulation study for the Whitecap Development
 - Conduct similar study
 - Compare results
 - Provide additional information and recommendations

Coastal Engineering Analysis

Gauges Used

- Three NOAA gauges are utilized in both LJA and Anchor QEA's study
 - These gauges provide boundary conditions for model runs
- An additional gauge monitored by CBI provided historical velocity data for model calibration and validation

Water Surface Elevation Extremal Results

 An extremal analysis is a generalized extreme value (GEV) analysis in which gauge data is statistically analyzed to determine return period events

	Bob Hall	Packery Channel	South Bird Island
Return Period	WSE (ft NAVD88)	WSE (ft NAVD88)	WSE (ft NAVD88)
1	1.6	1.0	1.2
2	2.9	2.1	2.0
5	3.6	2.8	2.5
10	4.1	3.4	2.7
15	4.4	3.8	2.9
20	4.7	4.1	2.9
25	4.8	4.4	3.0
50	5.4	5.3	3.2
75	5.7	5.9	3.3
100	6.0	6.4	3.4

Peer Review of LJA's Circulation Study

Field Data Collection Initiatives

- LJA conducted a probing survey to characterize channel cross sections across the existing canals
- LJA investigated each of the proposed and existing structures for characteristic dimensions and depths

Location	Width	Depth (ft, NAVD88)							
	(feet)	left	Center	Right	Ave				
A	274	-5.6	-5.9	-6.1	-5.9				
В	122	-7.1	-7	-5.8	-6.6				
С	189	-7.8	-5.8	-5.8	-6.5				
D	233	-9.8	-10.3	-6.8	-9.0				
E	342	-5.8	-10.8	-5.7	-7.4				
F	216	-11.3	-11.8	-12.1	-11.7				
G	313	-11.8	-13.1	-11.8	-12.2				
н	301	-11.8	-11.9	-9.8	-11.2				
1	365	-11.8	-14.8	-13.3	-13.3				
J	108	-8.8	-10.3	-8.8	-9.3				

Other Bathymetric Data Sources

- Hydrodynamic model conducted by Hamilton et. Al 2018
 - Composed of data from the following studies
 - Kraus et. al 2006, Maynord et al. 2001, Lambert et al. 2013, and Wood et al. 2017
 - Data used covers the land, bays, rivers, waterways, nearshore, and offshore area
- Bathymetry along the Gulf Coast is from NOAA Nautical Charts
- Bathymetry for the bays and land were based on NOAA Digital Elevation Models (DEMs) and Lidar

Model Surface Development

- LJA utilized online data or previous study data for all areas outside the project region
- Within the existing canals
 - LJA used survey cross-section data collected at each location and then used the average depth between the cross sections
- Existing culvert structures
 - Existing culvert pipe invert elevations were not determined but were input into the model so that the elevation stayed fully submerged with the correct geometry
- Other structures
 - Information from the data collection provided depths and dimensions for existing structures and design plans were used for the proposed structures

Coastal Modeling System (CMS) Model Grid

- Variable grid resolution
 - Cell size ranges from 6 to 200 meters
- Grid extent aligned with South Bird Island gauge to assure that the boundaries were not in proximity to the study area

**Figure provided by LJA Engineering

Model Calibration and Validation

- Calibration and Validation: 3/1/2021 to 3/8/2021
- Water Surface Elevations were extracted from the three gauges and used as boundary conditions

**Figure provided by LJA Engineering

Model Calibration and Validation Results

- Calibration and validation consisted of altering Manning's n value
- The calibration and validation resulted in a Manning's n value of 0.02, which provided and agreement index (R^2) of 0.94

Model Scenarios

- Existing Conditions
 - Bathymetric and structural configurations prior to the start of development
- Tide Gate
 - The narrowing of the connection between Packery Channel and Padre Lake
- Phase 1
 - Connection 1 is open and operational
- Phase 2
 - Connection 1, 2, and 3 are all open and operational

Scenario	Description	
EC	Existing Conditions	
1	Phase I with existing tide gate	
2	Phase I with tide gate removed	
3	Phase II with existing tide gate	
4	Phase II with tide gate removed	

**Figure and Table provided by LJA Engineering

High-Flow Event

- CBI Packery Channel Data LJA noted a high velocity event from 5/27/2017 to 6/1/2017
 - Associated with severe thunderstorms and high winds at the time
- LJA pulled the WSE from the gauges and used them as boundary conditions for the "High Flow Event" runs

**Figures and Table provided by LJA Engineering

Anchor QEA High Flow Event Characterization

 From the extremal analysis Anchor QEA determined the Peak WSE for each gauge area associated as

	WSE Max HF Event (m)	Return Period
Bob Hall Max	1.1	5
Packery Max	0.5	1.4
Bird Island Max	0.4	1

• The high-flow event is approximately a 5-year event

**Figure provided by LJA Engineering

	Bob Hall	Packery Channel	South Bird Island
Return Period	WSE (m NAVD88)	WSE (m NAVD88)	WSE (m NAVD88)
1	0.5	0.3	0.4
2	0.9	0.6	0.6
5	1.1	0.9	0.8
10	1.3	1.0	0.8
15	1.4	1.2	0.9
20	1.4	1.3	0.9
25	1.5	1.3	0.9
50	1.6	1.6	1.0
75	1.8	1.8	1.0
100	1.8	1.9	1.0

High-Flow Event Results

- LJA provides maximum velocity results at three locations
 - Park Road 22 Bridge Crossing
 - Packery Channel
 - CBI Gauge Location
 - Tide Gate
 - Between Lake Padre and Packery Channel

Scenario	Park Road 22 Crossing	Packery Channel	Flood Gate	
EC	-	5.2	3.28	
Phase 1 with gates	3.1	5.0	4.69	
Phase 1 without gates	3.7	4.9	2.32	
Phase 2 with gates	3.5	5.0	4.82	
Phase 2 without gates	4.3	4.8	2.42	

**Table provided by LJA Engineering

Design Change

- Following the completion of LJA's study, canal configurations were changed
- Model results from LJA for the final configuration have not been provided or reviewed

Anchor QEA Model Setup

Anchor QEA Model Surface Development

- Anchor QEA used the same data sources for surface development
- Within the existing canals
 - Anchor QEA implemented the cross-section data collected and then linearly interpolated the corresponding slope between for depths between cross sections
- Existing culvert structures
 - CMS does not allow for the inclusion of culverts
 - Anchor QEA implemented culverts as open channels
 - Culverts within the proposed development are never fully submerged
 - Follow open channel flow phenomenon
- Other structures
 - Information from the data collection provided depths and dimensions for existing structures, and design plans were used for the proposed structures

Topographic and Bathymetric Surface

Coastal Modeling System Model Grid

- Variable grid resolution
 - Cell size ranges from 5 to 160 meters
- Grid extent was selected to match LJA's model domain

Anchor QEA Model Calibration and Validation

Model Calibration and Validation

- Calibration and Validation: 3/11/20 to 3/18/20
- Water Surface Elevations were extracted from the three gauges and used as boundary conditions

Model Calibration and Validation Results

- Calibration and validation consisted of altering Manning's n
- The calibration and validation resulted in a Manning's n value of 0.02, which provided an index agreement index (R^2) of 0.91

Anchor QEA Modeling

Model Scenarios and Simulations

- Existing Conditions
- Park Road 22 Open
- Park Road 22 and School District Open
- Park Road 22, School District, and Commodores Bridge Open
- All Open

- Four Simulations for each scenario were ran:
 - Daily Conditions
 - High-Flow Event
 - 25-yr Event
 - 100-yr Event

Development of 25-Year Event

- Synthetic 25-year Gulf forcing surge event
- Idealized bell curve distribution developed for each gauge's 25-year water level
- Bell curve hydrograph was supplemented into the high-flow event time series

Development of 100-Year Event

- Synthetic 100-year Gulf forcing surge event
- Idealized bell curve distribution developed for each gauge's 100-year water level
- Bell curve hydrograph was supplemented into the high-flow event time series

Model Extraction Locations

Daily Tide Model Results

Daily Event: Park Road 22 and School District Open

		Whitecap	Gypsy	Park Rd 22	School District	Commodores Bridge	Laguna Madre Outlet
	Park Rd 22 Open	0.0	0.0	0.4	0.0	0.0	0.0
	Park Rd 22 and School District Open	3.0	1.0	1.8	1.4	0.0	0.0
Daily	Park Rd 22, School District, and Commodores Bridge Open	2.1	0.7	2.4	1.0	1.9	0.0
	All Open	1.8	0.6	2.5	0.8	1.6	0.4

High-Flow Event Model Results

High Flow Event: Park Road 22 and School District Open

		Whitecap	Gypsy	Park Rd 22	School District	Commodores Bridge	Laguna Madre Outlet
	Park Rd 22 Open	0.0	0.1	1.0	0.0	0.0	0.0
	Park Rd 22 and School District Open	4.8	1.6	2.4	1.9	0.0	0.0
High Flow Event	Park Rd 22, School District, and Commodores Bridge Open	3.4	1.1	3.7	1.4	3.6	0.0
	All Open	2.9	1.0	4.0	1.2	3.0	0.8

25-Year Event Model Results

25-Year Event: Park Road 22 and School District Open

		Whitecap	Gypsy	Park Rd 22	School District	Commodores Bridge	Laguna Madre Outlet
	Park Rd 22 Open	0.1	0.2	0.9	0.0	0.0	0.0
	Park Rd 22 and School District Open	6.8	2.4	2.9	2.3	0.0	0.0
25-year Event	Park Rd 22, School District, and Commodores Bridge Open	5.1	1.7	4.8	1.9	4.9	0.0
	All Open	4.4	1.5	5.3	1.8	4.0	1.1

100-Year Event Model Results

100-Year Event: Park Road 22 and School District Open

		Whitecap	Gypsy	Park Rd 22	School District	Commodores Bridge	Laguna Madre Outlet
	Park Rd 22 Open	0.1	0.3	1.4	0.0	0.0	0.0
	Park Rd 22 and School District Open	7.9	2.8	3.3	2.6	0.0	0.0
100-year Event	Park Rd 22, School District, and Commodores Bridge Open	6.1	2.1	5.4	2.2	5.6	0.0
	All Open	5.3	1.8	6.1	2.0	4.6	1.3

25-Year Event Park Road 22 and School District Open

25-Year Event Park Road 22 and School District Open

Recommendations

Recommendations

- Suggest further analysis for the need of scour protection at Whitecap Bridge
 - Results for Park Road 22 and School District Open
 - Daily event: 3.0 ft/s
 - High-flow event: 4.8 ft/s
 - Higher return period flow events: 6.8 to 7.9 ft/s
- Suggest further analysis for the need of scour protection at Gypsy Bridge
 - Results for Park Road 22 and School District Open
 - Daily event: 1.0 ft/s
 - High-flow event: 1.6 ft/s
 - Higher return period flow events: 2.4 to 2.8 ft/s

Additional Recommendations

- Bathymetric multibeam survey of existing bridges prior to any potentially incorporated scour protection installation
 - Provides details for design and implementation of new scour protection
- Bathymetric multibeam survey of existing bridges post scour protection
 - Provides baseline conditions that can be compared to in the future if additional survey is conducted after a storm event

